
Exploring Data Compression via Binary Trees1

Mark Daniel Ward
Purdue University

Summary

We investigate the Lempel-Ziv ’77 data compression algorithm by considering an analogous algorithm for efficiently

embedding strings in binary trees. This project includes a discussion of this comparison with two optional addenda on

error correction and decompression, followed by exercises and solutions.

Notes for the instructor

Students in discrete mathematics often have a dual interest in computer science. This project succinctly combines these

two areas. Data compression can be viewed as a discrete mathematics topic with many ramifications for computer

scientists. Students who have completed one or two semesters of computer science (in particular, who are familiar

with trees) may be eager to implement the algorithms discussed in C++, Java, or another object-oriented programming

language.

The Lempel-Ziv ’77 data compression algorithm was introduced in [1]. Analysis of the multiplicity matching pa-

rameter of suffix trees was presented in the present author’s Ph.D. thesis; an abridged journal version with many more

references to the literature can be found in [3]. An error correcting version of LZ’77 is outlined in [2].

Bibliography

[1] Lempel, A. and J. Ziv. “A universal algorithm for sequential data compression,” IEEE Transactions on Information

Theory 23 (1977) 337–343.

[2] Lonardi, S., W. Szpankowski, and M. D. Ward. “Error resilient LZ’77 data compression: algorithms, analysis, and

experiments,” IEEE Transactions on Information Theory 53 (2007) 1799–1813.

[3] Ward, M. D. and W. Szpankowski. “Analysis of the multiplicity matching parameter in suffix trees,”

Discrete Mathematics and Theoretical Computer Science AD (2005) 307–322, available online at

http://www.dmtcs.org/proceedings/abstracts/dmAD0128.abs.html.

1The author thanks his Ph.D. advisor, Wojciech Szpankowski, for guidance and encouragement throughout graduate school at Purdue University

(2001–2005).

143

144 Part I Classroom-tested Projects

Exploring Data Compression and Error Correction

We first discuss a standard method of embedding binary strings into a tree retrieval structure, often abbreviated as a

“trie”. A trie is a rather efficient tree structure. Every node has at most two children. When a node has no children, we

refer to it as a leaf. A string is inserted at the minimal depth necessary; in other words, each string is inserted at the

earliest depth that allows it to be distinguished from all other strings that currently reside in the trie. A “0” in a string

corresponds to a left branch in the trie; a “1” corresponds to a right branch. Consider two strings:

S1 D 0010111011

S2 D 1001010101

When we embed S1 and S2 into a trie, we can immediately distinguish these two strings just by examining their first

elements, which are 0 and 1, respectively.

S1 S2

If we embed another string, say S3 D 1110001010, we note that the first bit of S1 already distinguishes S1 from

S3, but two bits of S3 are necessary to make a distinction from S2. After S3 is embedded into the above trie, we have

S1

S2 S3

If S4 has a long prefix in common with S1, for instance, S4 D 1010111100, then we have

S1

S2

S3

S4

Currently four strings S1, S2, S3, and S4 have been inserted into the trie. Suppose that S D Si for some i . If S

begins with 0, we know immediately that S D S1. Otherwise, S begins with 1, so S is found to the right of the root

of the trie. If S begins with 11, then S D S3; otherwise, S begins with 10, and in this case, we proceed one level

further into the trie to determine if S D S2 (equivalently, S begins with 100) or S D S4 (i.e., S begins with 101). This

example illustrates an unambiguous way to efficiently embed binary strings into a binary tree. Many tree structures are

found in the literature and have been extensively analyzed; the trie structure given above is one of the most popular

and frequently analyzed.

For another example, consider the following eight strings:

S1 D 0101010100

S2 D 1001001001

S3 D 1000000111

S4 D 0111010000

Ward: Exploring Data Compression via Binary Trees 145

S5 D 1100101011

S6 D 1010010110

S7 D 0011001001

S8 D 0100001000

The associated trie is

S1 S2S3

S4

S5

S6

S7

S8

Next, we discuss a particular type of trie. In the examples above, the strings Si were not dependent on each other;

the strings were generated independently. We now consider strings that are generated as suffixes of a common word.

We write X for a long binary string, for instance, X D 01101001001110011010. . . . Then we write S1 to denote X

itself. We let S2 denote X with only the first character removed (so S2 is the second suffix of X). We let S3 denote X

with only the first and second characters removed (so S3 is the third suffix of X). So we have

S1 D 01101001001110011010 : : :

S2 D 1101001001110011010 : : :

S3 D 101001001110011010 : : :

S4 D 01001001110011010 : : :

S5 D 1001001110011010 : : :

S6 D 001001110011010 : : :

Computer scientists often use the term “suffix tree” to denote the trie constructed from the suffixes of a word. So

the suffix tree associated with S1; : : : ; S6 is constructed by the same method that the tries above were constructed.

Therefore, the suffix tree built from the first six suffixes of X is

S1

S2

S3S4 S5

S6

In the 1970s, Jacob Ziv and Abraham Lempel introduced a variety of sequential data compression algorithms. In

particular, they presented LZ’77 and LZ’78, two schemes that still pervade every aspect of modern data compression

theory and practice. Although thirty years have passed since these algorithms were introduced, these algorithms still

remain popular and widely-used. Below, we describe a slightly simplified version of LZ’77.

146 Part I Classroom-tested Projects

Keeping in mind the suffix trees constructed above, we now discuss the motivating concept for LZ’77. Our goal is

to compress a binary string, performing the compression one block at a time. To see the novel idea behind LZ’77, take

a second look at the suffix tree associated with

X D 01101001001110011010 : : :

in the last example above. Notice that S4 and S1 both have several characters at the beginning in common. For this

reason, S1 and S4 are placed close together in the suffix tree; both of these strings begin with the prefix 01. We can

make the following three observations:

1. The string S4 is very comparable to the string S1.

2. Both of these strings have a common prefix of length 2.

3. The next character of S4 after this common prefix is 0.

So we have described the first three characters of S4 by noticing that there is a block of length 2 (namely, 01) in

common with S1, and then the third character of S4 is 0. So S4 D 010 : : :. This is the inspiration behind LZ’77. (As

a side note, in step 3, we encode the next character explicitly so that the algorithm never gets “stuck.” This reasoning

for this extra character is crucial for the LZ’77 algorithm but admittedly will seem mysterious to those who are new to

the algorithm. Nonetheless, we insist that step 3 above is crucial in LZ’77 for preventing the algorithm from getting

stuck.)

Next we make a general statement of the algorithm; afterwards, we consider several illustrative examples.

We compress a binary string X D X1X2X3 : : : in blocks, starting from the beginning. Consider the stage of the com-

pression when the first n bits (namely, X1X2 : : : Xn) have already been compressed. Then SnC1 D XnC1XnC2XnC3 : : :

remains uncompressed.

In order to compress the next block of SnC1, we consider the various strings SiC1, for 0 � i < n. We aim to find

the value of i such that SnC1 and SiC1 have the longest prefix in common. We find this desired value of i , and we

write L to denote the length of the longest common prefix. Then we are able to compress the first L C 1 characters of

SnC1 by noting that:

1. The string SnC1 is very comparable to SiC1.

2. Both of these strings have a common prefix of length L.

3. The next character of SnC1 after this common prefix XnC1XnC2 : : : XnCL is exactly XnCLC1.

Notice the similarity in these three steps to our earlier comparison of S1 and S4. Despite the notation, our comparison

of SnC1 D XnC1XnC2XnC3 : : : to SiC1 D XiC1XiC2XiC3 is just the same idea as found in our comparison of S1 to

S4.

Finally, we note that the ingenuity behind Lempel and Ziv’s LZ’77 scheme is that, rather than storing SnC1, it is

often more efficient to store the following three pieces of information:

1. a pointer to XiC1, i.e., to the beginning of SiC1,

2. the length L of the common prefix,

3. the next character after this common prefix XnC1XnC2 : : : XnCL , namely, XnCLC1.

(In fact, this is a provably more efficient scheme when X is generated with a Markov dependency.) At any rate, it is

most helpful to consider some examples.

Example 1. Suppose X D 101101000110 00010100 : : : and n D 12 (the small space in X is just written for the

clarity of the reader in this example; of course X does not contain any actual gaps or spaces). So we are considering

the stage where the first twelve bits of X , namely X1 : : : X12 D 101101000110, have already been compressed. The

rest of X , namely S13 D X13X14 : : : D 00010100 : : :, is still uncompressed.

Ward: Exploring Data Compression via Binary Trees 147

In the notation given above, we have

SnC1 D XnC1XnC2 : : : D 00010100 : : :

We should compare this string to SiC1 D XiC1XiC2 : : : for i D 6, because S7 D X7X8 : : : has a prefix of length

L D 4 (namely, 0001) in common with S13. Thus, the first five characters of S13 can be efficiently compressed by:

1. storing a pointer to X7,

2. recording the length L D 4 of the common prefix between S7 D X7X8 : : : and S13 D X13X14 : : :,

3. noting that the next character after this common prefix X13X14X15X16 is X17 D 0.

By this method, X13X14X15X16X17 efficiently gets compressed. The algorithm proceeds to the next step, with

X1 : : : X17 already compressed; the remainder S18 D X18X19 : : : still needs to be compressed.

Incidentally, when constructing the suffix tree built on S1; S2; : : : ; S13, one notices that S7 and S13 are siblings.

This is not a coincidence; the general situation will be described at the end of the next example.

Example 2. Suppose X D 0110110 01110100000100010 : : : and n D 7. So the first seven bits of X , namely

X1 : : : X7 D 0110110, have already been compressed. The rest of X , namely S8 D X8X9 : : : D 01110100000100010 : : :,

has not yet been compressed.

We should compare S8 to SiC1 D XiC1XiC2 : : : for i D 0 or i D 3, because S1 D X1X2 : : : and S4 D X4X5 : : :

each have a prefix of length L D 3 (namely, 011) in common with S8. So, the first four characters of SnC1 D

XnC1XnC2 : : : can be efficiently compressed with the usual three steps:

1. storing a pointer to X1 (or a pointer to X4; either pointer is OK to use),

2. recording the length L D 3 of the common prefix between S1 and S8,

3. noting that the next character after this common prefix X8X9X10 is X11 D 1.

By this method, X8X9X10X11 is efficiently compressed. The algorithm proceeds to the next step, with X1 : : : X11

already compressed, and S12 D X12X13 : : : is still uncompressed.

Consider the suffix tree built on S1; S2; : : : ; S8. We note that S8’s parent has S1 and S4 as descendants. This is true

in general: the parent of the uncompressed string (in this case, the parent of S8) will be an ancestor of the appropriate

strings Si used to perform the compression (in this case, S1 and S4). In fact, all descendants of the parent of the

uncompressed string are appropriate candidates for performing the compression. Drawing the relevant suffix trees is

extremely helpful for illustrating the situation.

148 Part I Classroom-tested Projects

Addendum about Error Correction

For those readers wishing to explore research in this vein: Whenever two or more values of i are valid (i.e., two or

more strings Si are available for use in the compression), then some error correction can be performed at this stage in

the compression. In fact, this author dedicated his entire Ph.D. thesis to a precise study of how much error correction

can be performed in such a situation. The number of Si ’s available is called the multiplicity matching parameter; see

the References section for more details.

At each stage of the compression, whenever there are multiple pointers to choose from, let Mn denote the number

of valid values of i when compressing XnC1XnC2 : : :; in the example just given, M7 D 2 because i D 0 or i D 3

could be used. Then we can embed blog2 Mnc extra bits at no extra cost whatsoever. (Of course, for many n, we have

Mn D 1, and no parity check can be performed.)

As an example, when Mn D 2, we can perform a parity check, choosing the first pointer if a “1” is required in our

parity check, or selecting the second pointer if a “0” is required in our parity check. For example, the algorithm can

check the parity of the bits compressed up until the present stage. If an error is detected, a warning message about the

inconsistency could be given, or some error recovery could be performed. Such methods allow students a great degree

of freedom and creativity, because there are many possible ways of implementing the algorithm in an object-oriented

computer language.

Addendum about Decompression

Students who are quite eager to implement the LZ’77 algorithm with these extra features will certainly want to know

how to write decompression algorithms too. Such files are uncompressed in an analogous way to the method by

which they are compressed. The decompression is performed block-by-block, starting at the beginning of the file.

In order to decompress the next block, we consider the stage at which n bits have already been decompressed, say

X1X2 : : : Xn. In the compressed version of the file, we encounter a triple that describes a pointer, a length, and a next

bit. The pointer to some XiC1 and the length L tell us to copy XiC1XiC2 : : : XiCL into the next L positions, namely

XnC1XnC2 : : : XnCL . The next bit is exactly XnCLC1 . By repeatedly decoding triples, we reproduce the original

(uncompressed) file.

We note that students who are interested in both discrete mathematics and computer science will perhaps enjoy

implementing the LZ’77 program in C++, Java, or another object-oriented programming language. Afterwards, they

are able to measure the redundancy present in this aspect of LZ’77 by computing and tabulating Mn at each step during

the execution of the program. They are also able to experiment with a variety of uses for the redundant bits that are

available at most stages of the compression. Students can devise various error correction schemes or image embedding

techniques. See the references for a published implementation of the LZ’77 algorithm with error correcting extensions.

Ward: Exploring Data Compression via Binary Trees 149

Questions on Exploring Data Compression via Binary Trees

1. Construct the trie associated with the following eight strings:

S1 D 0001000011

S2 D 0011011111

S3 D 0101010110

S4 D 0010000101

S5 D 1110000001

S6 D 1001010001

S7 D 0000010011

S8 D 1100001001

2. Consider the string X D 01011001111101001110 : : :. Let S1; S2; : : : ; S8 denote the first eight suffixes of X .

Construct the suffix tree associated with these eight strings.

3. Consider the string X D 110110001010 10010011 : : :; suppose that the first twelve characters (namely, X1 : : : X12 D

110110001010) have been compressed and the remainder (i.e., S13 D 10010011 : : :) is uncompressed. What is

the next block to be compressed in the LZ’77 algorithm?

4. Consider the string X D 1111001101001101110110101 001101101000011 : : :; suppose that the first twenty-

five characters (namely, X1 : : : X25 D 1111001101001101110110101)have been compressed and the remainder

(i.e., S26 D 001101101000011 : : :) is uncompressed. What is the next block to be compressed in the LZ’77

algorithm?

150 Part I Classroom-tested Projects

Solutions

1. The desired trie is

S1 S2

S3

S4

S5

S6

S7

S8

2. The eight strings are

S1 D 01011001111101001110 : : :

S2 D 1011001111101001110 : : :

S3 D 011001111101001110 : : :

S4 D 11001111101001110 : : :

S5 D 1001111101001110 : : :

S6 D 001111101001110 : : :

S7 D 01111101001110 : : :

S8 D 1111101001110 : : :

and the suffix tree associated with these eight strings is

S1 S2

S3

S4S5

S6

S7

S8

3. We see that S13 D 10010011 : : : and S5 D 1000101010010011 : : : have a prefix of L D 3 characters in common

(namely, X13X14X15 D X5X6X7 D 100). So the next block has four characters, namely X13X14X15 D 100,

followed by the next character, which is X16 D 1.

4. We see that S26 D 001101101000011 : : : and S11 D 001101110110101001101101000011 : : : have a prefix of

L D 7 characters in common (namely, X26 : : : X32 D X11 : : : X17 D 0011011). So the next block has eight

characters: namely, X26 : : : X32 D 0011011, followed by the next character, which is X33 D 0.

